Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDC






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDC[z,m] > Specific values > Specialized values > For fixed m > Values at quarter-period points in the fundamental period parallelogram





http://functions.wolfram.com/09.28.03.0019.01









  


  










Input Form





JacobiDC[3 EllipticK[m] + 2 I EllipticK[1 - m], m] == ComplexInfinity










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiDC", "[", RowBox[List[RowBox[List[RowBox[List["3", RowBox[List["EllipticK", "[", "m", "]"]]]], "+", RowBox[List["2", "\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]], ",", "m"]], "]"]], "\[Equal]", "ComplexInfinity"]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> dc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiDC </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiDC", "[", RowBox[List[RowBox[List[RowBox[List["3", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m_"]], "]"]]]]]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", "ComplexInfinity"]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29