Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDC






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDC[z,m] > Series representations > q-series





http://functions.wolfram.com/09.28.06.0002.01









  


  










Input Form





JacobiDC[z, m] == (Pi/(2 EllipticK[m])) Sec[(Pi z)/(2 EllipticK[m])] + ((2 Pi)/EllipticK[m]) Sum[(((-1)^k EllipticNomeQ[m]^(2 k + 1))/ (1 - EllipticNomeQ[m]^(2 k + 1))) Cos[((2 k + 1) Pi z)/(2 EllipticK[m])], {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", "\[Pi]"]], RowBox[List["EllipticK", "[", "m", "]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> dc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <malignmark /> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> K </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> q </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> q </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiDC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> sec </ci> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "z"]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]]]]]]], RowBox[List["EllipticK", "[", "m", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29