|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.29.16.0043.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiDN[z, m] JacobiDN[z + EllipticK[m]/2, m] +
JacobiDN[z + EllipticK[m]/2, m] JacobiDN[z + EllipticK[m], m] +
JacobiDN[z + EllipticK[m], m] JacobiDN[z + (3 EllipticK[m])/2, m] +
JacobiDN[z + (3 EllipticK[m])/2, m] JacobiDN[z, m] ==
2 (1 - m)^(1/4) (1 + Sqrt[1 - m])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["EllipticK", "[", "m", "]"]]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["EllipticK", "[", "m", "]"]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["3", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "2"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["3", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "2"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]]]], "\[Equal]", RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["1", "/", "4"]]], RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "m"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> dn </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> dn </ci> <apply> <ci> VerticalSeparator </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["EllipticK", "[", "m_", "]"]], "2"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["EllipticK", "[", "m_", "]"]], "2"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", RowBox[List["EllipticK", "[", "m_", "]"]]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", RowBox[List["EllipticK", "[", "m_", "]"]]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["3", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "2"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["3", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "2"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "m"]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| A. Khare, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", math-ph/0201004, (2002) http://arXiv.org/abs/math-ph/0201004 A. Khare, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 43, issue 7, pp. 3798-3806 (2002) |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|