| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/09.29.16.0116.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Sum[JacobiDN[z + 2 k (EllipticK[m]/p), m] JacobiCN[z + 2 k (EllipticK[m]/p), 
     m] (JacobiSN[z + 2 (k - r) (EllipticK[m]/p), m] 
      JacobiDN[z + 2 (k - s) (EllipticK[m]/p), m] + 
     JacobiSN[z + 2 (k + r) (EllipticK[m]/p), m] 
      JacobiDN[z + 2 (k + s) (EllipticK[m]/p), m]), {k, 0, p - 1}] == 
  -2 JacobiNS[2 r (EllipticK[m]/p), m] JacobiCS[2 s (EllipticK[m]/p), m] 
   Sum[JacobiCN[z + 2 k (EllipticK[m]/p), m] 
     JacobiSN[z + 2 k (EllipticK[m]/p), m], {k, 0, p - 1}] /; 
 Element[p, Integers] && p >= 1 && Element[r, Integers] && 
  Inequality[1, LessEqual, r, Less, p] && Element[s, Integers] && 
  Inequality[1, LessEqual, s, Less, r] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "r"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "s"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "+", "r"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "+", "s"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], ")"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", "2"]], RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["2", "s", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "r", "<", "p"]], "\[And]", RowBox[List["s", "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "s", "<", "r"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mrow>  <mi> dn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> dn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> r </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> dn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> ns </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cs </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mrow>  <mi> cn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> r </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> r </mi>  <mo> < </mo>  <mi> p </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> s </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> s </mi>  <mo> < </mo>  <mi> r </mi>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> JacobiDN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <ci> k </ci>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiCN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <ci> k </ci>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> JacobiDN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> JacobiDN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <ci> k </ci>  <ci> s </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <ci> k </ci>  <ci> r </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <ci> JacobiNS </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiCS </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> JacobiCN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <ci> k </ci>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <ci> k </ci>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> p </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> r </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <lt />  <ci> r </ci>  <ci> p </ci>  </apply>  <apply>  <in />  <ci> s </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <lt />  <ci> s </ci>  <ci> r </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "s_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "+", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "+", "s_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "s", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "r", "<", "p"]], "&&", RowBox[List["s", "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "s", "<", "r"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | |  A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019  A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003) | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |