|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.29.16.0119.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[JacobiCN[z + 2 k (EllipticK[m]/p), m] JacobiDN[z + 2 k (EllipticK[m]/p),
m] (JacobiCN[z + 2 (k + r) (EllipticK[m]/p), m]
JacobiDN[z + 2 (k + r) (EllipticK[m]/p), m] +
JacobiCN[z + 2 (k - r) (EllipticK[m]/p), m]
JacobiDN[z + 2 (k - r) (EllipticK[m]/p), m]), {k, 0, p - 1}] ==
(-(4/m)) JacobiCS[2 r (EllipticK[m]/p), m] JacobiDS[2 r (EllipticK[m]/p),
m] Sum[JacobiDN[z + 2 k (EllipticK[m]/p), m]^2, {k, 0, p - 1}] +
(p/(2 EllipticK[m])) (Integrate[JacobiCN[t, m] JacobiDN[t, m]
(JacobiCN[t + 2 r (EllipticK[m]/p), m] JacobiDN[
t + 2 r (EllipticK[m]/p), m] + JacobiCN[t - 2 r (EllipticK[m]/p),
m] JacobiDN[t - 2 r (EllipticK[m]/p), m]),
{t, 0, 2 EllipticK[m]}] + (8/m) JacobiCS[2 r (EllipticK[m]/p), m]
JacobiDS[2 r (EllipticK[m]/p), m] EllipticE[m]) /;
Element[p, Integers] && p >= 1 && Element[r, Integers] &&
Inequality[1, LessEqual, r, Less, p - 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "+", "r"]], ")"]], " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "+", "r"]], ")"]], " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "r"]], ")"]], " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "r"]], ")"]], " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], ")"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["4", "m"]]], RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], "2"]]]]], "+", RowBox[List[FractionBox["p", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["t", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["t", ",", "m"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "+", RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["t", "+", RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "-", RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["t", "-", RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", RowBox[List[FractionBox["8", "m"], RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["2", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], RowBox[List["EllipticE", "[", "m", "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> r </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> ds </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msup> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </msubsup> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> t </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> t </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 8 </mn> <mi> m </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> ds </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> < </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> JacobiCS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <power /> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> JacobiCN </ci> <ci> t </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> t </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <ci> JacobiCS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> r </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <lt /> <ci> r </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "+", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "+", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List["JacobiDS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]], "2"]]]]], "m"]]], "+", FractionBox[RowBox[List["p", " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["t", ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["t", ",", "m"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "+", FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["t", "+", FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "-", FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["t", "-", FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]]]], ")"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", FractionBox[RowBox[List["8", " ", RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List["JacobiDS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "m"]]], ")"]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019 A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003) |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|