  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/09.29.16.0148.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Sum[JacobiSN[z + 4 k (EllipticK[m]/p), m]^3 
    (JacobiSN[z + 4 (k + r) (EllipticK[m]/p), m]^2 + 
     JacobiSN[z + 4 (k - r) (EllipticK[m]/p), m]^2), {k, 0, p - 1}] == 
  (2/m) JacobiNS[4 r (EllipticK[m]/p), m]^2 
    Sum[JacobiSN[z + 4 k (EllipticK[m]/p), m]^3, {k, 0, p - 1}] + 
   (2/m^2) (JacobiCS[4 r (EllipticK[m]/p), m]^2 
      JacobiNS[4 r (EllipticK[m]/p), m]^2 + 
     JacobiDS[4 r (EllipticK[m]/p), m]^2 JacobiNS[4 r (EllipticK[m]/p), m]^
       2 + JacobiCS[4 r (EllipticK[m]/p), m]^2 
      JacobiDS[4 r (EllipticK[m]/p), m]^2 - 
     3 JacobiCS[4 r (EllipticK[m]/p), m] JacobiDS[4 r (EllipticK[m]/p), m] 
      JacobiNS[4 r (EllipticK[m]/p), m]^2) 
    Sum[JacobiSN[z + 4 k (EllipticK[m]/p), m], {k, 0, p - 1}] /; 
 Element[p, Integers] && p >= 1 && Element[r, Integers] && 
  Inequality[1, LessEqual, r, Less, p] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], "3"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", RowBox[List["(", RowBox[List["k", "+", "r"]], ")"]], " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", RowBox[List["(", RowBox[List["k", "-", "r"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], "2"]]], ")"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["2", "m"], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]], "3"]]]]], "+", RowBox[List[FractionBox["2", SuperscriptBox["m", "2"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"], SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["3", RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], RowBox[List["JacobiDS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[RowBox[List["4", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["4", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "r", "<", "p"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> r </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 2 </mn>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> ns </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <msup>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mi> cs </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> ns </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> ds </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> ns </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> cs </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> ds </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> cs </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> ds </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> ns </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mi> sn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> r </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> r </mi>  <mo> < </mo>  <mi> p </mi>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> k </ci>  <ci> r </ci>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> JacobiNS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <power />  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <ci> JacobiCS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> JacobiNS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> JacobiDS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> JacobiNS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> JacobiCS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> JacobiDS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> JacobiCS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <ci> JacobiDS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> JacobiNS </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> r </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <ci> JacobiSN </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> p </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> r </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <lt />  <ci> r </ci>  <ci> p </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], "3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["k", "+", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["k", "-", "r_"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]], "2"]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]], "3"]]]]], "m"], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiDS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", RowBox[List["JacobiDS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], " ", SuperscriptBox[RowBox[List["JacobiNS", "[", RowBox[List[FractionBox[RowBox[List["4", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]]]], SuperscriptBox["m", "2"]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "r", "<", "p"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  |  A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019  A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003)  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |