|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.29.16.0165.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Product[JacobiDN[z + 2 (j + k r) (EllipticK[m]/p), m], {k, 0, l - 1}],
{j, 0, p - 1}] == (Product[JacobiCS[2 k r (EllipticK[m]/p), m]^2,
{k, 1, (l - 1)/2}] + 2 (-1)^((l - 1)/2)
Sum[Product[If[n == k, 1, JacobiCS[2 (n - k) r (EllipticK[m]/p), m]],
{n, 1, l}], {k, 1, (l - 1)/2}])
Sum[JacobiDN[z + 2 k (EllipticK[m]/p), m], {k, 0, p - 1}] /;
Element[p, Integers] && p >= 1 && Element[r, Integers] &&
Inequality[1, LessEqual, r, Less, p - 1] && Element[(l - 1)/2, Integers] &&
1 <= l <= p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["l", "-", "1"]]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["j", "+", RowBox[List["k", " ", "r"]]]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["(", RowBox[List["l", "-", "1"]], ")"]], "/", "2"]]], SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["2", "k", " ", "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["l", "-", "1"]], ")"]], "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["(", RowBox[List["l", "-", "1"]], ")"]], "/", "2"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "l"], RowBox[List["If", "[", RowBox[List[RowBox[List["n", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["2", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "r", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]], ",", "m"]], "]"]]]], "]"]]]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]], "\[And]", RowBox[List[FractionBox[RowBox[List["l", "-", "1"]], "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List["1", "\[LessEqual]", "l", "\[LessEqual]", "p"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> l </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mfrac> <mrow> <mi> l </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <msup> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> l </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mfrac> <mrow> <mi> l </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> l </mi> </munderover> <mrow> <mi> If </mi> <mo> [ </mo> <mrow> <mrow> <mi> n </mi> <mo> ⩵ </mo> <mi> k </mi> </mrow> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ] </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> < </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mfrac> <mrow> <mi> l </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> l </mi> <mo> ≤ </mo> <mi> p </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> l </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <ci> k </ci> <ci> r </ci> </apply> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> l </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <power /> <apply> <ci> JacobiCS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> l </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> l </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> l </ci> </uplimit> <apply> <ci> If </ci> <apply> <eq /> <ci> n </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> <apply> <ci> JacobiCS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <ci> k </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> r </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <lt /> <ci> r </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> l </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> ℕ </ci> </apply> <apply> <leq /> <ci> l </ci> <ci> p </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["l_", "-", "1"]]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", RowBox[List["k", " ", "r_"]]]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], FractionBox[RowBox[List["l", "-", "1"]], "2"]], SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "k", " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["l", "-", "1"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], FractionBox[RowBox[List["l", "-", "1"]], "2"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "l"], RowBox[List["If", "[", RowBox[List[RowBox[List["n", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["JacobiCS", "[", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], " ", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"], ",", "m"]], "]"]]]], "]"]]]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]], "&&", RowBox[List[FractionBox[RowBox[List["l", "-", "1"]], "2"], "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "l", "\[LessEqual]", "p"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019 A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003) |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|