|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.29.16.0168.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Product[JacobiCN[z + 2 (j + k) (EllipticK[m]/p), m], {k, 0, r - 1}],
{j, 0, p - 1}] == (p/(2 EllipticK[m]))
Integrate[Product[JacobiCN[t + 2 k (EllipticK[m]/p), m], {k, 0, r - 1}],
{t, 0, 2 EllipticK[m]}] /; Element[p, Integers] && p >= 3 &&
Element[r/2, Integers] && Inequality[2, LessEqual, r, Less, p - 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["r", "-", "1"]]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]], RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]]]], "\[Equal]", RowBox[List[FractionBox["p", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["r", "-", "1"]]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "+", RowBox[List["2", "k", " ", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "/", "p"]]]]]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "3"]], "\[And]", RowBox[List[RowBox[List["r", "/", "2"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["2", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </msubsup> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mfrac> <mi> r </mi> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> < </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </msubsup> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mfrac> <mi> r </mi> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> < </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["p_", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["r_", "-", "1"]]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "p_"]]], ",", "m_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["p", " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List["r", "-", "1"]]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["t", "+", FractionBox[RowBox[List["2", " ", "k", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "p"]]], ",", "m"]], "]"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "3"]], "&&", RowBox[List[FractionBox["r", "2"], "\[Element]", "Integers"]], "&&", RowBox[List["2", "\[LessEqual]", "r", "<", RowBox[List["p", "-", "1"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions. II", math-ph/0207019, (2002) http://arXiv.org/abs/math-ph/0207019 A. Khare, A. Lakshminarayan, U. Sukhatme, "Cyclic Identities Involving Jacobi Elliptic Functions", Journal of Mathematical Physics, v. 44, issue 4, pp. 1822-1841 (2003) |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|