|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.29.18.0044.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiCN[z, m] JacobiDN[z, m] JacobiSN[z + (4 EllipticK[m])/3, m]
JacobiSN[z + (8 EllipticK[m])/3, m] + JacobiCN[z + (4 EllipticK[m])/3, m]
JacobiDN[z + (4 EllipticK[m])/3, m] JacobiSN[z + (8 EllipticK[m])/3, m]
JacobiSN[z, m] + JacobiCN[z + (8 EllipticK[m])/3, m]
JacobiDN[z + (8 EllipticK[m])/3, m] JacobiSN[z, m]
JacobiSN[z + (4 EllipticK[m])/3, m] ==
(-(1/(1 - JacobiDN[(2 EllipticK[m])/3, m]^2)))
(JacobiCN[z, m] JacobiDN[z, m] + JacobiCN[z + (4 EllipticK[m])/3, m]
JacobiDN[z + (4 EllipticK[m])/3, m] + JacobiCN[z + (8 EllipticK[m])/3, m]
JacobiDN[z + (8 EllipticK[m])/3, m])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]], "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> JacobiDN </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]], "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|