Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDN






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDN[z,m] > Identities involving the group of functions > Cyclic Identities of rank 4 and above > r=4, p=3





http://functions.wolfram.com/09.29.18.0045.01









  


  










Input Form





m^2 (JacobiCN[z, m] JacobiCN[z + (2 EllipticK[m])/3, m] JacobiSN[z, m] JacobiSN[z + (2 EllipticK[m])/3, m] + JacobiCN[z + (2 EllipticK[m])/3, m] JacobiCN[z + (4 EllipticK[m])/3, m] JacobiSN[z + (2 EllipticK[m])/3, m] JacobiSN[z + (4 EllipticK[m])/3, m] + JacobiCN[z + (4 EllipticK[m])/3, m] JacobiCN[z, m] JacobiSN[z + (4 EllipticK[m])/3, m] JacobiSN[z, m]) == ((2 m JacobiDN[(2 EllipticK[m])/3, m])/(1 - JacobiDN[(2 EllipticK[m])/3, m]^ 2)) (JacobiDN[z, m]^2 + JacobiDN[z + (2 EllipticK[m])/3, m]^2 + JacobiDN[z + (4 EllipticK[m])/3, m]^2) + m - (2 - m) (1 + JacobiDN[(2 EllipticK[m])/3, m])^2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["m", "2"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]]]]]], ")"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]], "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], "2"]]], ")"]]]], "+", "m", "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]]]], ")"]], "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <ci> JacobiCN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> <apply> <ci> JacobiDN </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> JacobiDN </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> JacobiDN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> JacobiDN </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["m_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "3"]]], ",", "m_"]], "]"]], " ", RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]]]], ")"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "m", " ", RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"]]], ",", "m"]], "]"]], "2"]]], ")"]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]], "2"]]]], "+", "m", "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["JacobiDN", "[", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "3"], ",", "m"]], "]"]]]], ")"]], "2"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-03-07