|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.31.27.0023.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiNC[z, m]^2 == (WeierstrassP[z/Sqrt[Subscript[e, 1] - Subscript[e, 3]],
{Subscript[g, 2], Subscript[g, 3]}] - Subscript[e, 3])/
(WeierstrassP[z/Sqrt[Subscript[e, 1] - Subscript[e, 3]],
{Subscript[g, 2], Subscript[g, 3]}] - Subscript[e, 1]) /;
{Subscript[\[Omega], 1], Subscript[\[Omega], 3]} ==
WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] &&
Subscript[\[Omega], 2] == -Subscript[\[Omega], 1] -
Subscript[\[Omega], 3] &&
m == ModularLambda[Subscript[\[Omega], 3]/Subscript[\[Omega], 1]] &&
Subscript[e, n] == WeierstrassP[Subscript[\[Omega], n],
{Subscript[g, 2], Subscript[g, 3]}] && Element[n, {1, 2, 3}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["JacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox["z", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["e", "3"]]], RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox["z", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["e", "1"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "\[And]", RowBox[List["m", "\[Equal]", RowBox[List["ModularLambda", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["e", "n"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "n"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[And]", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <mi> nc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> z </mi> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> <mrow> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> z </mi> <msqrt> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mrow> <mstyle scriptlevel='0'> <mo> - </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ⩵ </mo> <semantics> <mrow> <mi> λ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Lambda]", "(", TagBox[FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> e </mi> <mi> n </mi> </msub> <mo> ⩵ </mo> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ω </mi> <mi> n </mi> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <ci> JacobiNC </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> WeierstrassP </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> WeierstrassP </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <eq /> <ci> m </ci> <apply> <ci> ModularLambda </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> n </ci> </apply> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <ci> n </ci> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <in /> <ci> n </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["JacobiNC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox["z", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["e", "3"]]], RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox["z", SqrtBox[RowBox[List[SubscriptBox["e", "1"], "-", SubscriptBox["e", "3"]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["e", "1"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[SubscriptBox["\[Omega]", "2"], "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["\[Omega]", "1"]]], "-", SubscriptBox["\[Omega]", "3"]]]]], "&&", RowBox[List["m", "\[Equal]", RowBox[List["ModularLambda", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]]]], "&&", RowBox[List[SubscriptBox["e", "n"], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["\[Omega]", "n"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "&&", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|