|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.32.21.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[JacobiND[z, m], z] ==
(Sqrt[1 - JacobiCD[z, m]^2] ArcCos[JacobiCD[z, m]])/((1 - m) JacobiSD[z, m])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["JacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]], RowBox[List["ArcCos", "[", " ", RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", " ", "-", " ", "m"]], ")"]], RowBox[List["JacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]]]], " "]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mi> nd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> cd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> cd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <ci> JacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> JacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccos /> <apply> <ci> JacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <ci> JacobiSD </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["JacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]], " ", RowBox[List["ArcCos", "[", RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], " ", RowBox[List["JacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|