|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.33.04.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Residue[JacobiNS[z, m], {z, 2 r EllipticK[m] + I 2 s EllipticK[1 - m]}] ==
(-1)^r /; Element[{r, s}, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List["JacobiNS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", RowBox[List["{", RowBox[List["z", ",", RowBox[List[RowBox[List["2", "r", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "2", "s", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]]]], "}"]]]], "]"]], "\[Equal]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"]]], "/;", RowBox[List[RowBox[List["{", RowBox[List["r", ",", "s"]], "}"]], "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> res </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> ns </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> s </mi> </mrow> <mo> } </mo> </mrow> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> z </ci> </apply> <apply> <ci> JacobiNS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> <imaginaryi /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <in /> <list> <ci> r </ci> <ci> s </ci> </list> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Residue", "[", RowBox[List[RowBox[List["JacobiNS", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", RowBox[List["{", RowBox[List["z_", ",", RowBox[List[RowBox[List["2", " ", "r_", " ", RowBox[List["EllipticK", "[", "m_", "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "2", " ", "s_", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m_"]], "]"]]]]]]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], "/;", RowBox[List[RowBox[List["{", RowBox[List["r", ",", "s"]], "}"]], "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|