|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.34.16.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiSC[z + (2 r + 1) EllipticK[m], m] == (-(1/Sqrt[1 - m]))
JacobiCS[z, m] /; Element[r, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["z", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "r"]], "+", "1"]], ")"]], RowBox[List["EllipticK", "[", "m", "]"]]]]]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox[RowBox[List["1", "-", "m"]]]]]], " ", RowBox[List["JacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]]]]]], "/;", RowBox[List["r", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> sc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> r </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiSC </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> JacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <in /> <ci> r </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["z_", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "r_"]], "+", "1"]], ")"]], " ", RowBox[List["EllipticK", "[", "m_", "]"]]]]]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["JacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], SqrtBox[RowBox[List["1", "-", "m"]]]]]], "/;", RowBox[List["r", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|