|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.34.16.0019.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiSC[2 z, m] == (2 JacobiSN[z, m] JacobiCN[z, m] JacobiDN[z, m])/
(JacobiCN[z, m]^2 - JacobiSN[z, m]^2 JacobiDN[z, m]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["2", "z"]], ",", "m"]], "]"]], "\[Equal]", FractionBox[RowBox[List["2", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "-", RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiSC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["2", " ", "z_"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], "-", RowBox[List[SuperscriptBox[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|