|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.36.16.0058.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiSN[n z, m] == (-1)^((n - 1)/2) m^((n^2 - 1)/4)
Product[JacobiSN[z + 2 ((\[Mu] EllipticK[m] + \[Nu] I EllipticK[1 - m])/
n), m], {\[Mu], -((n - 1)/2), (n - 1)/2},
{\[Nu], -((n - 1)/2), (n - 1)/2}] /; Element[(n + 1)/2, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["n", " ", "z"]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], " ", SuperscriptBox["m", FractionBox[RowBox[List[SuperscriptBox["n", "2"], "-", "1"]], "4"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["\[Mu]", "=", RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "2"]]]]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["\[Nu]", "=", RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "2"]]]]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", RowBox[List["2", FractionBox[RowBox[List[RowBox[List["\[Mu]", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "+", RowBox[List["\[Nu]", " ", "\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]], "n"]]]]], ",", "m"]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mfrac> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> μ </mi> <mo> = </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> ν </mi> <mo> = </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mfrac> <mrow> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> n </mi> </mfrac> </mrow> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <msup> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiSN </ci> <apply> <times /> <ci> n </ci> <ci> z </ci> </apply> <ci> m </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> m </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> ν </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <product /> <bvar> <ci> μ </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <ci> JacobiSN </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> ν </ci> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["n_", " ", "z_"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], " ", SuperscriptBox["m", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["n", "2"], "-", "1"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["\[Mu]", "=", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["\[Nu]", "=", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]]], FractionBox[RowBox[List["n", "-", "1"]], "2"]], RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Mu]", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "+", RowBox[List["\[Nu]", " ", "\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]], ")"]]]], "n"]]], ",", "m"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|