
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/09.36.21.0023.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[1/(JacobiSN[z, m] JacobiDN[z, m]), z] ==
(Sqrt[m]/Sqrt[1 - m]) ArcCot[(Sqrt[m]/Sqrt[1 - m]) JacobiCN[z, m]] +
(1/2) Log[(1 - JacobiCN[z, m])/(1 + JacobiCN[z, m])]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", FractionBox[RowBox[List["\[DifferentialD]", "z"]], RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], " ", RowBox[List["ArcCot", "[", RowBox[List[FractionBox[SqrtBox["m"], SqrtBox[RowBox[List["1", "-", "m"]]]], " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["1", "+", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]]], "]"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mfrac> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> <mrow> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> dn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <msqrt> <mi> m </mi> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <msqrt> <mi> m </mi> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <divide /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccot /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> JacobiCN </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List["JacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["m"], " ", RowBox[List["ArcCot", "[", FractionBox[RowBox[List[SqrtBox["m"], " ", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], SqrtBox[RowBox[List["1", "-", "m"]]]], "]"]]]], SqrtBox[RowBox[List["1", "-", "m"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["1", "+", RowBox[List["JacobiCN", "[", RowBox[List["z", ",", "m"]], "]"]]]]], "]"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|