|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.36.27.0024.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiSN[z, m] == (1/Sqrt[m]) (WeierstrassZeta[z + Subscript[\[Omega], 1] +
Subscript[\[Omega], 3], {Subscript[g, 2], Subscript[g, 3]}] -
WeierstrassZeta[z + Subscript[\[Omega], 3], {Subscript[g, 2],
Subscript[g, 3]}] - WeierstrassZeta[Subscript[\[Omega], 1],
{Subscript[g, 2], Subscript[g, 3]}]) /;
{Subscript[\[Omega], 1], Subscript[\[Omega], 3]} ==
{2 EllipticK[m], -2 EllipticK[m] - I EllipticK[1 - m]} &&
{Subscript[g, 2], Subscript[g, 3]} == WeierstrassInvariants[
{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox["m"]], RowBox[List["(", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"], "+", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "-", RowBox[List["I", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]]]], "}"]]]], "\[And]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"], "+", SubscriptBox["\[Omega]", "3"]]], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "1"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", SubscriptBox["\[Omega]", "3"]]], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <msqrt> <mi> m </mi> </msqrt> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiSN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> WeierstrassZeta </ci> <apply> <plus /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> WeierstrassZeta </ci> <apply> <plus /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </list> </apply> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"], "+", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], SqrtBox["m"]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]]]], "}"]]]], "&&", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|