|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.50.02.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KleinInvariantJ[z] == (EllipticTheta[2, 0, E^(Pi I z)]^8 +
EllipticTheta[3, 0, E^(Pi I z)]^8 + EllipticTheta[4, 0, E^(Pi I z)]^8)^3/
(54 (EllipticTheta[2, 0, E^(Pi I z)] EllipticTheta[3, 0, E^(Pi I z)]
EllipticTheta[4, 0, E^(Pi I z)])^8) /; Im[z] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KleinInvariantJ", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"]]], ")"]], "^", "3"]], "/", RowBox[List["(", RowBox[List["54", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]]]], ")"]], "^", "8"]]]], ")"]]]]]], "/;", " ", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> J </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["J", "(", TagBox["z", Rule[Editable, True]], ")"]], InterpretTemplate[Function[KleinInvariantJ[Slot[1]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> + </mo> <msup> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mrow> <mn> 54 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ϑ </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KleinInvariantJ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 4 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 54 </cn> <apply> <power /> <apply> <times /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 4 </cn> <cn type='integer'> 0 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <gt /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KleinInvariantJ", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"], "+", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], "8"]]], ")"]], "3"], RowBox[List["54", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "z"]]]]], "]"]]]], ")"]], "8"]]]], "/;", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|