Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











KleinInvariantJ






Mathematica Notation

Traditional Notation









Elliptic Functions > KleinInvariantJ[z] > Differentiation > Low-order differentiation





http://functions.wolfram.com/09.50.20.0001.02









  


  










Input Form





D[KleinInvariantJ[z], z] == (-((16 I EllipticK[ModularLambda[z]]^2)/(27 Pi (-1 + ModularLambda[z])^2 ModularLambda[z]^2))) (-2 + ModularLambda[z]) (1 + ModularLambda[z]) (-1 + 2 ModularLambda[z]) (1 - ModularLambda[z] + ModularLambda[z]^2)^2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List["KleinInvariantJ", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["16", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List["ModularLambda", "[", "z", "]"]], "]"]], "2"], " "]], RowBox[List["27", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["ModularLambda", "[", "z", "]"]], "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["ModularLambda", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["ModularLambda", "[", "z", "]"]], "+", SuperscriptBox[RowBox[List["ModularLambda", "[", "z", "]"]], "2"]]], ")"]], "2"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <semantics> <mrow> <mi> J </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;J&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[KleinInvariantJ[Slot[1]]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> - </mo> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#955; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Lambda]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> KleinInvariantJ </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <imaginaryi /> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 27 </cn> <pi /> <apply> <power /> <apply> <plus /> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z_"]]], RowBox[List["KleinInvariantJ", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["16", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List["ModularLambda", "[", "z", "]"]], "]"]], "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["ModularLambda", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["ModularLambda", "[", "z", "]"]], "+", SuperscriptBox[RowBox[List["ModularLambda", "[", "z", "]"]], "2"]]], ")"]], "2"]]], RowBox[List["27", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["ModularLambda", "[", "z", "]"]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["ModularLambda", "[", "z", "]"]], "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29