|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.50.27.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KleinInvariantJ[Subscript[\[Omega], 3]/Subscript[\[Omega], 1]] ==
Subscript[g, 2]^3/(Subscript[g, 2]^3 - 27 Subscript[g, 3]^2) /;
{Subscript[g, 2], Subscript[g, 3]} == WeierstrassInvariants[
{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}] &&
Im[Subscript[\[Omega], 3]/Subscript[\[Omega], 1]] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KleinInvariantJ", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]], "\[Equal]", FractionBox[SubsuperscriptBox["g", "2", "3"], RowBox[List[SubsuperscriptBox["g", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["g", "3", "2"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> J </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["J", "(", TagBox[FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[KleinInvariantJ[Slot[1]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mrow> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mo> - </mo> <mrow> <mn> 27 </mn> <mo> ⁢ </mo> <msubsup> <mi> g </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KleinInvariantJ </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <gt /> <apply> <imaginary /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KleinInvariantJ", "[", FractionBox[SubscriptBox["\[Omega]_", "3"], SubscriptBox["\[Omega]_", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[SubsuperscriptBox["g", "2", "3"], RowBox[List[SubsuperscriptBox["g", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["g", "3", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|