|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.51.13.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 (w[z] - 1)^4 ((w[z] - 1) w[z] + 1) Derivative[1][w][z]
Derivative[3][w][z] w[z]^4 + 12 (w[z] - 2) (w[z] - 1) (w[z] + 1)
(2 w[z] - 1) ((w[z] - 1) w[z] (w[z] (w[z] (7 (w[z] - 2) w[z] + 1) + 6) +
21) + 7) Derivative[1][w][z]^2 Derivative[2][w][z] w[z] +
(112 - (w[z] - 1) w[z] ((w[z] - 1) w[z]
((w[z] - 1) w[z] ((w[z] - 1) w[z] (224 (w[z] - 1) w[z] - 827) +
410) - 1099) - 728)) Derivative[1][w][z]^4 -
729 (w[z] - 1)^4 w[z]^4 ((w[z] - 1) w[z] + 1) Derivative[2][w][z]^2 ==
0 /; w[z] == ModularLambda[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["486", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], RowBox[List["w", "[", "z", "]"]]]], "+", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["w", "[", "z", "]"]], "4"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["w", "[", "z", "]"]]]], "-", "1"]], ")"]], "\n", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "2"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]], "+", "1"]], ")"]]]], "+", "6"]], ")"]]]], "+", "21"]], ")"]]]], "+", "7"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["w", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["112", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["224", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]], "-", "827"]], ")"]]]], "+", "410"]], ")"]]]], "-", "1099"]], ")"]]]], "-", "728"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "-", RowBox[List["729", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], "4"], SuperscriptBox[RowBox[List["w", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]]]], ")"]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["ModularLambda", "[", "z", "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='StandardForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mn> 486 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 729 </mn> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 112 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 224 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 827 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 410 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1099 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 728 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <semantics> <mrow> <mi> λ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Lambda]", "(", TagBox["z", Rule[Editable, True]], ")"]], InterpretTemplate[Function[ModularLambda[Slot[1]]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 486 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> -729 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 21 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 112 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 224 </cn> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -827 </cn> </apply> <apply> <plus /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 410 </cn> </apply> </apply> <cn type='integer'> -1099 </cn> </apply> </apply> <cn type='integer'> -728 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <ci> ModularLambda </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["486", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], "+", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List["w", "[", "z_", "]"]], "4"]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["w", "[", "z_", "]"]]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "2"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], "+", "1"]], ")"]]]], "+", "6"]], ")"]]]], "+", "21"]], ")"]]]], "+", "7"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["w", "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["112", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["224", " ", RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], "-", "827"]], ")"]]]], "+", "410"]], ")"]]]], "-", "1099"]], ")"]]]], "-", "728"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "-", RowBox[List["729", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], "4"], " ", SuperscriptBox[RowBox[List["w", "[", "z_", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", "[", "z_", "]"]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["ModularLambda", "[", "z", "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|