|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.18.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] ==
{I ((60/Subscript[g, 2]) Sum[If[{m, n} == {0, 0}, 0, 1/(2 m + 2 n t)^4],
{m, -Infinity, Infinity}, {n, -Infinity, Infinity}])^(1/4),
I t ((60/Subscript[g, 2]) Sum[If[{m, n} == {0, 0}, 0, 1/(2 m + 2 n t)^4],
{m, -Infinity, Infinity}, {n, -Infinity, Infinity}])^(1/4)} /;
KleinInvariantJ[t] == Subscript[g, 2]^3/(Subscript[g, 2]^3 -
27 Subscript[g, 3]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["60", SubscriptBox["g", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", RowBox[List["2", " ", "n", " ", "t"]]]], ")"]], "4"]]]], "]"]]]]]]]], ")"]], RowBox[List["1", "/", "4"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", "t", " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["60", SubscriptBox["g", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", RowBox[List["2", " ", "n", " ", "t"]]]], ")"]], "4"]]]], "]"]]]]]]]], ")"]], RowBox[List["1", "/", "4"]]]]]]], "}"]]]], "/;", " ", RowBox[List[RowBox[List["KleinInvariantJ", "[", "t", "]"]], "\[Equal]", FractionBox[SubsuperscriptBox["g", "2", "3"], RowBox[List[SubsuperscriptBox["g", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["g", "3", "2"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 60 </mn> <mtext> </mtext> </mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> ≠ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mi> t </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> , </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> t </mi> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 60 </mn> <mtext> </mtext> </mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> ≠ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mi> t </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <semantics> <mrow> <mi> J </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["J", "(", TagBox["t", Rule[Editable, True]], ")"]], InterpretTemplate[Function[KleinInvariantJ[Slot[1]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mrow> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mo> - </mo> <mrow> <mn> 27 </mn> <mo> ⁢ </mo> <msubsup> <mi> g </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> } </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> ⅈ </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 60 </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> ≠ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> ∞ </ms> </apply> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <ms> t </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 4 </ms> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> / </ms> <ms> 4 </ms> </list> </apply> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> ⅈ </ms> <ms> t </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 60 </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> ≠ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> ∞ </ms> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <ms> t </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 4 </ms> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> / </ms> <ms> 4 </ms> </list> </apply> </apply> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> J </ms> <ms> ( </ms> <apply> <ci> TagBox </ci> <ms> t </ms> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> KleinInvariantJ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <ms> ⩵ </ms> <apply> <ci> FractionBox </ci> <apply> <ci> SubsuperscriptBox </ci> <ms> g </ms> <ms> 2 </ms> <ms> 3 </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> g </ms> <ms> 2 </ms> <ms> 3 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 27 </ms> <apply> <ci> SubsuperscriptBox </ci> <ms> g </ms> <ms> 3 </ms> <ms> 2 </ms> </apply> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["60", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", RowBox[List["2", " ", "n", " ", "t"]]]], ")"]], "4"]]]], "]"]]]]]]]], SubscriptBox["gg", "2"]], ")"]], RowBox[List["1", "/", "4"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", "t", " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["60", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", RowBox[List["2", " ", "n", " ", "t"]]]], ")"]], "4"]]]], "]"]]]]]]]], SubscriptBox["gg", "2"]], ")"]], RowBox[List["1", "/", "4"]]]]]]], "}"]], "/;", RowBox[List[RowBox[List["KleinInvariantJ", "[", "t", "]"]], "\[Equal]", FractionBox[SubsuperscriptBox["gg", "2", "3"], RowBox[List[SubsuperscriptBox["gg", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["g", "3", "2"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|