|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.19.03.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(9 Subscript[g, 3])/(2 Subscript[g, 2]) == (Pi/(2 Subscript[\[Omega], 1]))^
2 /; {Subscript[g, 2], Subscript[g, 3]} == WeierstrassInvariants[
{Subscript[\[Omega], 1], ComplexInfinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[FractionBox[RowBox[List["9", SubscriptBox["g", "3"]]], RowBox[List["2", SubscriptBox["g", "2"]]]], "\[Equal]", SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ")"]], "2"]]], "/;", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", "ComplexInfinity"]], "}"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> , </mo> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> , </mo> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⩵ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List["9", " ", SubscriptBox["g_", "3"]]], RowBox[List["2", " ", SubscriptBox["g_", "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], ")"]], "2"], "/;", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", "ComplexInfinity"]], "}"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|