Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassInvariants






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassInvariants[{w1,w3}] > Series representations > Other series representations





http://functions.wolfram.com/09.19.06.0006.01









  


  










Input Form





WeierstrassInvariants[{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}] == {(Pi^4/Subscript[\[Omega], 1]^4) (1/12 + 20 Sum[DivisorSigma[3, k] q^(2 k), {k, 1, Infinity}]), (Pi^6/Subscript[\[Omega], 1]^6) (1/216 - (7/3) Sum[DivisorSigma[5, k] q^(2 k), {k, 1, Infinity}])} /; q == Exp[(I Pi Subscript[\[Omega], 3])/Subscript[\[Omega], 1]] && Im[Subscript[\[Omega], 3]/Subscript[\[Omega], 1]] != 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "4"], " "]], SubsuperscriptBox["\[Omega]", "1", "4"]], RowBox[List["(", RowBox[List[FractionBox["1", "12"], "+", RowBox[List["20", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["3", ",", "k"]], "]"]], " ", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]]]]], ")"]]]], ",", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "6"], " "]], SubsuperscriptBox["\[Omega]", "1", "6"]], RowBox[List["(", RowBox[List[FractionBox["1", "216"], "-", RowBox[List[FractionBox["7", "3"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["5", ",", "k"]], "]"]], " ", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]]]]], ")"]]]]]], "}"]]]], "/;", RowBox[List[RowBox[List["q", "\[Equal]", RowBox[List["Exp", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]], "]"]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]], "\[NotEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <semantics> <mi> &#963; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Sigma]&quot;, DivisorSigma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mn> 6 </mn> </msubsup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 216 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <semantics> <mi> &#963; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Sigma]&quot;, DivisorSigma] </annotation> </semantics> <mn> 5 </mn> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> q </mi> <mo> &#10869; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 2 </mn> </msub> </mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> &#8800; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <list> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 3 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 12 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 216 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 7 <sep /> 3 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 5 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </list> </apply> <apply> <and /> <apply> <eq /> <ci> q </ci> <apply> <exp /> <apply> <times /> <imaginaryi /> <pi /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <neq /> <apply> <imaginary /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "12"], "+", RowBox[List["20", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["3", ",", "k"]], "]"]], " ", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]]]]], ")"]]]], SubsuperscriptBox["\[Omega]\[Omega]", "1", "4"]], ",", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "216"], "-", RowBox[List[FractionBox["7", "3"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["5", ",", "k"]], "]"]], " ", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]]]]], ")"]]]], SubsuperscriptBox["\[Omega]\[Omega]", "1", "6"]]]], "}"]], "/;", RowBox[List[RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]\[Omega]", "1"]]]]], "&&", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]\[Omega]", "1"]], "]"]], "\[NotEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29