Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassInvariants






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassInvariants[{w1,w3}] > Differentiation > Fractional integro-differentiation > With respect to omega1





http://functions.wolfram.com/09.19.20.0009.01









  


  










Input Form





D[WeierstrassInvariants[{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}], {Subscript[\[Omega], 1], \[Alpha]}] == {(Pi^4/12) FDPowerConstant[Subscript[\[Omega], 1], -4, \[Alpha]] Subscript[\[Omega], 1]^(-4 - \[Alpha]) + (15/(Subscript[\[Omega], 1]^\[Alpha] (2 Subscript[\[Omega], 3]^4))) Sum[(1/n^4) Hypergeometric2F1Regularized[1, 4, 1 - \[Alpha], -((m Subscript[\[Omega], 1])/(n Subscript[\[Omega], 3]))], {m, -Infinity, Infinity}, {n, 1, Infinity}], (Pi^6/216) FDPowerConstant[Subscript[\[Omega], 1], -6, \[Alpha]] Subscript[\[Omega], 1]^(-6 - \[Alpha]) + (35/(Subscript[\[Omega], 1]^\[Alpha] (8 Subscript[\[Omega], 3]^6))) Sum[(1/n^6) Hypergeometric2F1Regularized[1, 6, 1 - \[Alpha], -((m Subscript[\[Omega], 1])/(n Subscript[\[Omega], 3]))], {m, -Infinity, Infinity}, {n, 1, Infinity}]}










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", "\[Alpha]"]], "}"]]], RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "4"], "12"], RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["-", "4"]], ",", "\[Alpha]"]], "]"]], SubsuperscriptBox["\[Omega]", "1", RowBox[List[RowBox[List["-", "4"]], "-", "\[Alpha]"]]]]], "+", RowBox[List[FractionBox[RowBox[List["15", " ", SubsuperscriptBox["\[Omega]", "1", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["2", " ", SubsuperscriptBox["\[Omega]", "3", "4"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["n", "4"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "4", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["m", " ", SubscriptBox["\[Omega]", "1"]]], RowBox[List["n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]]]]]]]]]]]], ",", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "6"], "216"], RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["-", "6"]], ",", "\[Alpha]"]], "]"]], SubsuperscriptBox["\[Omega]", "1", RowBox[List[RowBox[List["-", "6"]], "-", "\[Alpha]"]]]]], "+", RowBox[List[FractionBox[RowBox[List["35", " ", SubsuperscriptBox["\[Omega]", "1", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List["8", SubsuperscriptBox["\[Omega]", "3", "6"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["n", "6"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "6", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["m", " ", SubscriptBox["\[Omega]", "1"]]], RowBox[List["n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]]]]]]]]]]]]]], "}"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> { </mo> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mi> &#945; </mi> </msubsup> </mrow> </mfrac> <mo> , </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mi> &#945; </mi> </msubsup> </mrow> </mfrac> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 3 </mn> <mn> 4 </mn> </msubsup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> n </mi> <mn> 4 </mn> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;]]], RowBox[List[&quot;n&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;3&quot;]]]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> , </mo> <mrow> <mrow> <mfrac> <mrow> <mtext> </mtext> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> </mrow> <mn> 216 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 3 </mn> <mn> 6 </mn> </msubsup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> n </mi> <mn> 6 </mn> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;]]], RowBox[List[&quot;n&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;3&quot;]]]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <list> <apply> <ci> D </ci> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#945; </ci> </list> </apply> <apply> <ci> D </ci> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#945; </ci> </list> </apply> </list> <list> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> -4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 1 </cn> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 216 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> -6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> n </ci> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 1 </cn> <cn type='integer'> 6 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </list> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "12"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["\[Omega]\[Omega]", "1"], ",", RowBox[List["-", "4"]], ",", "\[Alpha]"]], "]"]], " ", SubsuperscriptBox["\[Omega]\[Omega]", "1", RowBox[List[RowBox[List["-", "4"]], "-", "\[Alpha]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["15", " ", SubsuperscriptBox["\[Omega]\[Omega]", "1", RowBox[List["-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "4", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["m", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], RowBox[List["n", " ", SubscriptBox["\[Omega]\[Omega]", "3"]]]]]]]], "]"]], SuperscriptBox["n", "4"]]]]]]]], RowBox[List["2", " ", SubsuperscriptBox["\[Omega]\[Omega]", "3", "4"]]]]]], ",", RowBox[List[RowBox[List[FractionBox["1", "216"], " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["\[Omega]\[Omega]", "1"], ",", RowBox[List["-", "6"]], ",", "\[Alpha]"]], "]"]], " ", SubsuperscriptBox["\[Omega]\[Omega]", "1", RowBox[List[RowBox[List["-", "6"]], "-", "\[Alpha]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["35", " ", SubsuperscriptBox["\[Omega]\[Omega]", "1", RowBox[List["-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "6", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["-", FractionBox[RowBox[List["m", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], RowBox[List["n", " ", SubscriptBox["\[Omega]\[Omega]", "3"]]]]]]]], "]"]], SuperscriptBox["n", "6"]]]]]]]], RowBox[List["8", " ", SubsuperscriptBox["\[Omega]\[Omega]", "3", "6"]]]]]]]], "}"]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29