|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.13.04.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassP[z, WeierstrassInvariants[{a Subscript[\[Omega], 1] +
b Subscript[\[Omega], 3], c Subscript[\[Omega], 1] +
d Subscript[\[Omega], 3]}]] == WeierstrassP[z,
WeierstrassInvariants[{Subscript[\[Omega], 1], Subscript[\[Omega],
3]}]] /; Element[{a, b, c, d}, Integers] && a d - b c == \[PlusMinus]1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["a", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["b", " ", SubscriptBox["\[Omega]", "3"]]]]], ",", RowBox[List[RowBox[List["c", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["d", " ", SubscriptBox["\[Omega]", "3"]]]]]]], "}"]], "]"]]]], "]"]], "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "c", ",", "d"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["a", " ", "d"]], "-", RowBox[List["b", " ", "c"]]]], "\[Equal]", RowBox[List["\[PlusMinus]", "1"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> d </mi> </mrow> <mo> } </mo> </mrow> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> ± </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </list> </apply> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> </apply> <apply> <and /> <apply> <in /> <list> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> d </ci> </list> <integers /> </apply> <apply> <eq /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <ci> PlusMinus </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["a_", " ", SubscriptBox["\[Omega]_", "1"]]], "+", RowBox[List["b_", " ", SubscriptBox["\[Omega]_", "3"]]]]], ",", RowBox[List[RowBox[List["c_", " ", SubscriptBox["\[Omega]_", "1"]]], "+", RowBox[List["d_", " ", SubscriptBox["\[Omega]_", "3"]]]]]]], "}"]], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]\[Omega]", "1"], ",", SubscriptBox["\[Omega]\[Omega]", "3"]]], "}"]], "]"]]]], "]"]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "c", ",", "d"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["a", " ", "d"]], "-", RowBox[List["b", " ", "c"]]]], "\[Equal]", RowBox[List["\[PlusMinus]", "1"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|