|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.13.07.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z == Integrate[1/Sqrt[4 t^3 - Subscript[g, 2] t - Subscript[g, 3]],
{t, w, Infinity}] /;
w == WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["z", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Integral]", "w", "\[Infinity]"], FractionBox[RowBox[List["\[DifferentialD]", "t"]], SqrtBox[RowBox[List[RowBox[List["4", SuperscriptBox["t", "3"]]], "-", RowBox[List[SubscriptBox["g", "2"], "t"]], "-", SubscriptBox["g", "3"]]]]]]]]], " ", "/;", RowBox[List["w", "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mi> z </mi> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∫ </mo> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> t </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mi> t </mi> </mrow> <mo> - </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <ci> z </ci> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <divide /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <ci> t </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "z_", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "w", "\[Infinity]"], RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["t", "3"]]], "-", RowBox[List[SubscriptBox["g", "2"], " ", "t"]], "-", SubscriptBox["g", "3"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|