Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Product representations





http://functions.wolfram.com/09.13.08.0001.01









  


  










Input Form





WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] == Subscript[e, i] + (Pi^2/(4 Subscript[\[Omega], i]^2)) Cot[(Pi z)/(2 Subscript[\[Omega], i])]^2 Product[Tan[(k Pi Subscript[\[Omega], j])/Subscript[\[Omega], i]]^4 ((Cos[(k Pi Subscript[\[Omega], j])/Subscript[\[Omega], i]]^2 - Sin[(Pi z)/(2 Subscript[\[Omega], i])]^2)/ (Sin[(k Pi Subscript[\[Omega], j])/Subscript[\[Omega], i]]^2 - Sin[(Pi z)/(2 Subscript[\[Omega], i])]^2))^2, {k, 1, Infinity}] /; Element[{i, j}, {1, 2, 3}] && i != j










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[SubscriptBox["e", "i"], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], RowBox[List["4", SubsuperscriptBox["\[Omega]", "i", "2"]]]], SuperscriptBox[RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "4"], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"]]], RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"]]]], ")"]], "2"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["i", ",", "j"]], "}"]], "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]], "\[And]", RowBox[List["i", "\[NotEqual]", "j"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msub> <mi> e </mi> <mi> i </mi> </msub> <mo> + </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mi> i </mi> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msup> <mi> tan </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> j </mi> </msub> </mrow> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> j </mi> </msub> </mrow> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> j </mi> </msub> </mrow> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mi> i </mi> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> i </mi> <mo> , </mo> <mi> j </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> } </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> i </mi> <mo> &#8800; </mo> <mi> j </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> i </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> k </ci> <pi /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> k </ci> <pi /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> k </ci> <pi /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <list> <ci> i </ci> <ci> j </ci> </list> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </list> </apply> <apply> <neq /> <ci> i </ci> <ci> j </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["e", "i"], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["Tan", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "4"], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"]]], RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["k", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "j"]]], SubscriptBox["\[Omega]", "i"]], "]"]], "2"], "-", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "i"]]]], "]"]], "2"]]]], ")"]], "2"]]]]]]], RowBox[List["4", " ", SubsuperscriptBox["\[Omega]", "i", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["i", ",", "j"]], "}"]], "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]], "&&", RowBox[List["i", "\[NotEqual]", "j"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29