Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Differential equations > Partial differential equations





http://functions.wolfram.com/09.13.13.0007.01









  


  










Input Form





12 Subscript[g, 3] D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], Subscript[g, 2]] + (2/3) Subscript[g, 2]^2 D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], Subscript[g, 3]] - 2 WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], z] == (2/3) D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], {z, 2}] - Subscript[g, 2]/3










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["12", SubscriptBox["g", "3"], RowBox[List[SubscriptBox["\[PartialD]", SubscriptBox["g", "2"]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "+", RowBox[List[FractionBox["2", "3"], SubsuperscriptBox["g", "2", "2"], RowBox[List[SubscriptBox["\[PartialD]", SubscriptBox["g", "3"]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "-", RowBox[List["2", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["2", "3"], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "-", FractionBox[SubscriptBox["g", "2"], "3"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mn> 3 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> D </ci> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> D </ci> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["12", " ", SubscriptBox["g_", "3"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[SubscriptBox["g_", "2"]]]], RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]]]], "+", RowBox[List[FractionBox["2", "3"], " ", SubsuperscriptBox["g_", "2", "2"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[SubscriptBox["g_", "3"]]]], RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]]]], "-", RowBox[List["2", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z_"]]], RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["2", "3"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]]]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], "-", FractionBox[SubscriptBox["gg", "2"], "3"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18