|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.13.16.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassP[Subscript[z, 1] + Subscript[z, 2],
{Subscript[g, 2], Subscript[g, 3]}] ==
WeierstrassP[Subscript[z, 2], {Subscript[g, 2], Subscript[g, 3]}] +
Sum[1/(Subscript[z, 1] + Subscript[z, 2] - 2 m Subscript[\[Omega], 1] -
2 n Subscript[\[Omega], 3])^2 -
1/(Subscript[z, 2] - 2 m Subscript[\[Omega], 1] -
2 n Subscript[\[Omega], 3])^2, {m, -Infinity, Infinity},
{n, -Infinity, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "+", SubscriptBox["z", "2"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "1"], "+", SubscriptBox["z", "2"], "-", RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "-", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "2"]], "-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "2"], "-", RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "-", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "2"]]]], ")"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ℘ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 1 </ms> </apply> <ms> + </ms> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ; </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ℘ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ∞ </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> + </ms> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 1 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassP", "[", RowBox[List[RowBox[List[SubscriptBox["z_", "1"], "+", SubscriptBox["z_", "2"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["zz", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "1"], "+", SubscriptBox["zz", "2"], "-", RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "-", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "2"]], "-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "2"], "-", RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "-", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "2"]]]], ")"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|