Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Transformations > Determinants involving derivatives





http://functions.wolfram.com/09.13.16.0020.01









  


  










Input Form





Det[{{1, WeierstrassP[Subscript[z, 1], {Subscript[g, 2], Subscript[g, 3]}], WeierstrassPPrime[Subscript[z, 1], {Subscript[g, 2], Subscript[g, 3]}]}, {1, WeierstrassP[Subscript[z, 2], {Subscript[g, 2], Subscript[g, 3]}], WeierstrassPPrime[Subscript[z, 2], {Subscript[g, 2], Subscript[g, 3]}]}, {1, WeierstrassP[Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}], WeierstrassPPrime[Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}]}}] == (-(WeierstrassSigma[Subscript[z, 1], {Subscript[g, 2], Subscript[g, 3]}]^3 WeierstrassSigma[Subscript[z, 2], {Subscript[g, 2], Subscript[g, 3]}]^3 WeierstrassSigma[Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}]^3)^ (-1)) (2 WeierstrassSigma[Subscript[z, 2] - Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}] WeierstrassSigma[ Subscript[z, 1] - Subscript[z, 2], {Subscript[g, 2], Subscript[g, 3]}] WeierstrassSigma[Subscript[z, 1] - Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}] WeierstrassSigma[ Subscript[z, 1] + Subscript[z, 2] + Subscript[z, 3], {Subscript[g, 2], Subscript[g, 3]}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Det", "[", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]]]], "}"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "/", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["z", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["z", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "3"]]], ")"]]]], RowBox[List["(", RowBox[List["2", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "-", SubscriptBox["z", "2"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "-", SubscriptBox["z", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "+", SubscriptBox["z", "2"], "+", SubscriptBox["z", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> <mtd> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> <mtd> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> <mtd> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#10072; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, GridBox[List[List[&quot;1&quot;, RowBox[List[&quot;\[WeierstrassP]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]], RowBox[List[SuperscriptBox[&quot;\[WeierstrassP]&quot;, &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]]], List[&quot;1&quot;, RowBox[List[&quot;\[WeierstrassP]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]], RowBox[List[SuperscriptBox[&quot;\[WeierstrassP]&quot;, &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]]], List[&quot;1&quot;, RowBox[List[&quot;\[WeierstrassP]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]], RowBox[List[SuperscriptBox[&quot;\[WeierstrassP]&quot;, &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;;&quot;, SubscriptBox[&quot;g&quot;, &quot;2&quot;]]], &quot;,&quot;, SubscriptBox[&quot;g&quot;, &quot;3&quot;]]], &quot;)&quot;]]]]], &quot;\[RightBracketingBar]&quot;]], List[Det]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;z&quot;, &quot;3&quot;]]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;z&quot;, &quot;2&quot;]]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;z&quot;, &quot;3&quot;]]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> z </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;z&quot;, &quot;3&quot;]]], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msup> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;z&quot;, &quot;1&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;z&quot;, &quot;2&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;z&quot;, &quot;3&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <determinant /> <list> <list> <cn type='integer'> 1 </cn> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <ci> WeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> WeierstrassSigma </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> WeierstrassSigma </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> WeierstrassSigma </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Det", "[", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z_", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z_", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z_", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z_", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["WeierstrassP", "[", RowBox[List[SubscriptBox["z_", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassPPrime", "[", RowBox[List[SubscriptBox["z_", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "}"]]]], "}"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["zz", "1"], "-", SubscriptBox["zz", "2"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["zz", "1"], "-", SubscriptBox["zz", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List[SubscriptBox["zz", "1"], "+", SubscriptBox["zz", "2"], "+", SubscriptBox["zz", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["zz", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["zz", "2"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["zz", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29