Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassP[z,{g2,g3}] > Differentiation > Low-order differentiation > With respect to omega3





http://functions.wolfram.com/09.13.20.0013.02









  


  










Input Form





D[WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}], Subscript[\[Omega], 3]] == ((2 Subscript[\[Omega], 1])/ (Pi Subscript[\[Omega], 3])) Sqrt[-(Subscript[\[Omega], 3]^2/Subscript[\[Omega], 1]^2)] (Subscript[\[Omega], 1] (2 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}]^2 + WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}] - Subscript[g, 2]/3) - Subscript[\[Eta], 1] (2 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] + z WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", SubscriptBox["\[Omega]", "3"]], RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], RowBox[List["\[Pi]", " ", SubscriptBox["\[Omega]", "3"]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SubsuperscriptBox["\[Omega]", "3", "2"], SubsuperscriptBox["\[Omega]", "1", "2"]]]]], RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]], "+", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", FractionBox[SubscriptBox["g", "2"], "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["\[Eta]", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msubsup> <mi> &#969; </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> &#951; </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#951; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[SubscriptBox["\[Omega]_", "3"]]]], RowBox[List["WeierstrassP", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SubsuperscriptBox["\[Omega]\[Omega]", "3", "2"], SubsuperscriptBox["\[Omega]\[Omega]", "1", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["\[Omega]\[Omega]", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]], "+", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "-", FractionBox[SubscriptBox["gg", "2"], "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["\[Eta]", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["\[Pi]", " ", SubscriptBox["\[Omega]\[Omega]", "3"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18