|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.06.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] ==
(Subscript[\[Eta], 1] z)/Subscript[\[Omega], 1] +
(Pi/(2 Subscript[\[Omega], 1])) Cot[(Pi z)/(2 Subscript[\[Omega], 1])] +
((2 Pi)/Subscript[\[Omega], 1])
Sum[(q^(2 k) Sin[(Pi z)/Subscript[\[Omega], 1]])/
(1 - 2 q^(2 k) Cos[(Pi z)/Subscript[\[Omega], 1]] + q^(4 k)),
{k, 1, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], " ", "z"]], SubscriptBox["\[Omega]", "1"]], "+", RowBox[List[FractionBox["\[Pi]", RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", "\[Pi]"]], SubscriptBox["\[Omega]", "1"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["q", RowBox[List["2", "k"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "]"]]]], RowBox[List["1", "-", RowBox[List["2", SuperscriptBox["q", RowBox[List["2", "k"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "]"]]]], "+", SuperscriptBox["q", RowBox[List["4", "k"]]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <msub> <mi> η </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> q </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], " ", "z"]], SubscriptBox["\[Omega]", "1"]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]]]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["q", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "]"]]]], RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["q", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "]"]]]], "+", SuperscriptBox["q", RowBox[List["4", " ", "k"]]]]]]]]]], SubscriptBox["\[Omega]", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|