|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.06.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] ==
(Subscript[\[Eta], 1] z)/Subscript[\[Omega], 1] +
(Pi/(2 Subscript[\[Omega], 1]))
Sum[Cot[((z - 2 n Subscript[\[Omega], 3]) Pi)/(2 Subscript[\[Omega], 1])],
{n, -Infinity, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], "z"]], SubscriptBox["\[Omega]", "1"]], "+", RowBox[List[FractionBox["\[Pi]", RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["Cot", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], " ", "\[Pi]"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <cot /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], " ", "z"]], SubscriptBox["\[Omega]", "1"]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["Cot", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], " ", "\[Pi]"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|