|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.13.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 Subscript[g, 3] D[WeierstrassZeta[Subscript[\[Omega], 3],
{Subscript[g, 2], Subscript[g, 3]}], Subscript[g, 2]] +
4 Subscript[g, 2]^2 D[WeierstrassZeta[Subscript[\[Omega], 3],
{Subscript[g, 2], Subscript[g, 3]}], Subscript[g, 3]] -
Subscript[g, 2] Subscript[\[Omega], 3] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["72", " ", SubscriptBox["g", "3"], " ", RowBox[List[SubscriptBox["\[PartialD]", SubscriptBox["g", "2"]], RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "+", RowBox[List["4", " ", SubsuperscriptBox["g", "2", "2"], " ", RowBox[List[SubscriptBox["\[PartialD]", SubscriptBox["g", "3"]], RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], " ", "-", RowBox[List[SubscriptBox["g", "2"], SubscriptBox["\[Omega]", "3"]]]]], "\[Equal]", "0"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mn> 72 </mn> <mo> ⁢ </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mfrac> <mrow> <mo> ∂ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "3"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mfrac> <mrow> <mo> ∂ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "3"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> D </ci> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> D </ci> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["72", " ", SubscriptBox["g_", "3"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[SubscriptBox["g_", "2"]]]], RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]_", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]]]], "+", RowBox[List["4", " ", SubsuperscriptBox["g_", "2", "2"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[SubscriptBox["g_", "3"]]]], RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]_", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]]]], "-", RowBox[List[SubscriptBox["g_", "2"], " ", SubscriptBox["\[Omega]_", "3"]]]]], "]"]], "\[RuleDelayed]", "0"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|