|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.16.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassZeta[z, WeierstrassInvariants[{Subscript[\[Omega], 1]/2,
Subscript[\[Omega], 3]}]] == Subscript[e, 1] z +
WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] +
WeierstrassZeta[z + Subscript[\[Omega], 1],
{Subscript[g, 2], Subscript[g, 3]}] - Subscript[\[Eta], 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "2"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["e", "1"], " ", "z"]], "+", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "+", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["\[Eta]", "1"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[RowBox[List[SubscriptBox["g", "2"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "2"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ",", TagBox[RowBox[List[SubscriptBox["g", "3"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "2"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", SubscriptBox["g", "2"]]], ",", SubscriptBox["g", "3"]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"]]], Rule[Editable, True]], ";", SubscriptBox["g", "2"]]], ",", SubscriptBox["g", "3"]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> - </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[RowBox[List[SubscriptBox["g", "2"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "2"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ",", TagBox[RowBox[List[SubscriptBox["g", "3"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "2"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", SubscriptBox["g", "2"]]], ",", SubscriptBox["g", "3"]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", SubscriptBox["\[Omega]", "1"]]], Rule[Editable, True]], ";", SubscriptBox["g", "2"]]], ",", SubscriptBox["g", "3"]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> - </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[FractionBox[SubscriptBox["\[Omega]_", "1"], "2"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["e", "1"], " ", "z"]], "+", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "+", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List["z", "+", SubscriptBox["\[Omega]\[Omega]", "1"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "-", SubscriptBox["\[Eta]", "1"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|