|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.20.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}], {z, n}] ==
(Subscript[\[Eta], 1] z^(1 - n))/(Subscript[\[Omega], 1] Gamma[2 - n]) -
(Pi^2/(4 Subscript[\[Omega], 1]^2)) Csc[(Pi z)/(2 Subscript[\[Omega], 1])]^
2 KroneckerDelta[n - 1] - (n/2) (Pi/Subscript[\[Omega], 1])^(n + 1)
Sum[((((-1)^j Binomial[n - 1, k])/(k + 1))
Sin[(Pi z)/(2 Subscript[\[Omega], 1])]^(-2 k - 2) Binomial[2 k, j]
(k - j)^(n - 1) Sin[(n Pi)/2 + (k - j) ((Pi z)/Subscript[\[Omega],
1])])/2^(2 k), {k, 0, n - 1}, {j, 0, k - 1}] +
((2 Pi^(n + 1))/Subscript[\[Omega], 1]^(n + 1))
Sum[((q^(2 k) k^n)/(1 - q^(2 k))) Sin[(k Pi z)/Subscript[\[Omega], 1] +
(n Pi)/2], {k, 1, Infinity}] /; Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], SuperscriptBox["z", RowBox[List["1", "-", "n"]]]]], RowBox[List[SubscriptBox["\[Omega]", "1"], RowBox[List["Gamma", "[", RowBox[List["2", "-", "n"]], "]"]]]]], "-", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], RowBox[List["4", SubsuperscriptBox["\[Omega]", "1", "2"]]]], SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], "]"]], "2"], RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], "-", RowBox[List[FractionBox["n", "2"], SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", SubscriptBox["\[Omega]", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]]]], RowBox[List["k", "+", "1"]]], SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], "k"]], "-", "2"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], " ", FractionBox[RowBox[List["\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]]]]]], "]"]]]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List["2", SuperscriptBox["\[Pi]", RowBox[List["n", "+", "1"]]]]], SubsuperscriptBox["\[Omega]", "1", RowBox[List["n", "+", "1"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["q", RowBox[List["2", "k"]]], SuperscriptBox["k", "n"]]], RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", "k"]]]]]], RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> π </mi> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> ω </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <msubsup> <mi> ω </mi> <mn> 1 </mn> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> k </mi> <mi> n </mi> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> k </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> k </ci> <pi /> <ci> z </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Eta]", "1"], " ", SuperscriptBox["z", RowBox[List["1", "-", "n"]]]]], RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "n"]], "]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]], "2"], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], RowBox[List["4", " ", SubsuperscriptBox["\[Omega]", "1", "2"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "n", " ", SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", SubscriptBox["\[Omega]", "1"]], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "2"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "z"]], ")"]]]], SubscriptBox["\[Omega]", "1"]]]], "]"]]]], RowBox[List["k", "+", "1"]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[Pi]", RowBox[List["n", "+", "1"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["q", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox["k", "n"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[Pi]", " ", "z"]], SubscriptBox["\[Omega]", "1"]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]], RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]]]], SubsuperscriptBox["\[Omega]", "1", RowBox[List["n", "+", "1"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|