|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.17.20.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}], {z, \[Alpha]}] ==
FDPowerConstant[z, -1, \[Alpha]] z^(-\[Alpha] - 1) -
2 z^(2 - \[Alpha]) Sum[If[{m, n} == {0, 0}, 0,
(1/(2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])^3)
Hypergeometric2F1Regularized[1, 3, 3 - \[Alpha],
z/(2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])]],
{m, -Infinity, Infinity}, {n, -Infinity, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "-", RowBox[List["2", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "3"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "3", ",", RowBox[List["3", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]]]]]], "]"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <msubsup> <mi> ℱ𝒞 </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> ≠ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> × </mo> <mtext>  </mtext> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mo> ; </mo> <mfrac> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["3", HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["3", "-", "\[Alpha]"]], HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[FractionBox["z", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> ∂ </ms> <ms> α </ms> </apply> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ζ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ∂ </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> α </ms> </apply> </list> </apply> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> ℱ𝒞 </ms> <ms> exp </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> α </ms> <ms> ) </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> α </ms> </list> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> α </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> ≠ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> ∞ </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 3 </ms> </apply> </apply> <ms> × </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <apply> <ci> FormBox </ci> <ms> 2 </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> FormBox </ci> <ms> 1 </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> 3 </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <ms> - </ms> <ms> α </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <ms> </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <ms> </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["WeierstrassZeta", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "-", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "3", ",", RowBox[List["3", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "3"]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|