|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.07.06.0020.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiZeta[z, m] == z - (EllipticE[m]/EllipticK[m]) z +
Sum[((Binomial[2 k, j] (-1)^(i - j + k) 2^(1 + 2 i - 2 k) (j - k)^(2 i)
m^k)/(k! (2 i + 1)!)) (Pochhammer[-(1/2), k] -
(EllipticE[m]/EllipticK[m]) Pochhammer[1/2, k]) z^(2 i + 1),
{i, 1, Infinity}, {k, 1, Infinity}, {j, 0, k - 1}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List["z", "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " "]], RowBox[List["EllipticK", "[", "m", "]"]]], "z"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "-", "j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "i"]], "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], RowBox[List["2", " ", "i"]]], " ", SuperscriptBox["m", "k"], " "]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "i"]], "+", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "k"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " "]], RowBox[List["EllipticK", "[", "m", "]"]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]]]], ")"]], SuperscriptBox["z", RowBox[List[RowBox[List["2", "i"]], "+", "1"]]]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> k </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> </apply> <apply> <power /> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["z", "-", FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "-", "j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "i"]], "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], RowBox[List["2", " ", "i"]]], " ", SuperscriptBox["m", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "k"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], RowBox[List["EllipticK", "[", "m", "]"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]], "!"]]]]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|