  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/08.07.06.0025.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    JacobiZeta[z, m] \[Proportional] -JacobiZeta[ArcCsc[Sqrt[m]], m] - 
   ((Sqrt[2] EllipticE[m])/(Sqrt[-1 + m] EllipticK[m])) 
    Sqrt[Sqrt[-1 + m] (z - Subscript[z, 0])] + 
   Sqrt[2] Sqrt[Sqrt[-1 + m] (z - Subscript[z, 0])] (z - Subscript[z, 0]) 
    (2/3 - ((-2 + m) EllipticE[m])/(12 (-1 + m) EllipticK[m]) - 
     ((-2 + m)/(10 Sqrt[-1 + m]) + ((4 - 4 m + 9 m^2) EllipticE[m])/
        (480 (-1 + m)^(3/2) EllipticK[m])) (z - Subscript[z, 0]) - 
     ((-20 + 20 m + 3 m^2)/(336 (-1 + m)) + ((8 - 12 m - 26 m^2 + 15 m^3) 
         EllipticE[m])/(2688 (-1 + m)^2 EllipticK[m])) 
      (z - Subscript[z, 0])^2 + \[Ellipsis]) /; 
 (z -> Subscript[z, 0]) && Subscript[z, 0] == -ArcCsc[Sqrt[m]] + Pi u && 
  Element[u, Integers] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox["2"], "  ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]]], "+", RowBox[List[SqrtBox["2"], "  ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["(", RowBox[List[FractionBox["2", "3"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "m"]], RowBox[List["10", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", "-", RowBox[List["4", " ", "m"]], "+", RowBox[List["9", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["480", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "20"]], "+", RowBox[List["20", " ", "m"]], "+", RowBox[List["3", " ", SuperscriptBox["m", "2"]]]]], RowBox[List["336", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["12", " ", "m"]], "-", RowBox[List["26", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["m", "3"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["2688", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "2"], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "->", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[SubscriptBox["z", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> Ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> Ζ </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> csc </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mi> m </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msqrt>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mn> 10 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mn> 4 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 480 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 20 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 20 </mn>  </mrow>  <mrow>  <mn> 336 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mi> m </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 26 </mn>  <mo> ⁢ </mo>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mn> 8 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2688 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  <mo>  </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> csc </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mi> m </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> u </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> JacobiZeta </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> Ζ </ci>  </apply>  <apply>  <ci> VerticalSeparator </ci>  <apply>  <arccsc />  <apply>  <power />  <ci> m </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 10 </cn>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 480 </cn>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 20 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -20 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 336 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 26 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> 8 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2688 </cn>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <pi />  <ci> u </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arccsc />  <apply>  <power />  <ci> m </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> u </ci>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], ")"]], " ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["2", "3"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "m"]], RowBox[List["10", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", "-", RowBox[List["4", " ", "m"]], "+", RowBox[List["9", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["480", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "20"]], "+", RowBox[List["20", " ", "m"]], "+", RowBox[List["3", " ", SuperscriptBox["m", "2"]]]]], RowBox[List["336", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["12", " ", "m"]], "-", RowBox[List["26", " ", SuperscriptBox["m", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["m", "3"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["2688", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "2"], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[SubscriptBox["zz", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |