
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/08.07.06.0028.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
JacobiZeta[z, m] \[Proportional] (-JacobiZeta[ArcCsc[Sqrt[m]], m])
(I Sqrt[-(1/(z - Subscript[z, 0])^2)] (z - Subscript[z, 0]) +
Sqrt[(z - Subscript[z, 0])^2]/(z - Subscript[z, 0])) +
(Sqrt[1 - m] - EllipticE[m]/(Sqrt[1 - m] EllipticK[m]))
(z - Subscript[z, 0]) + (m/(6 Sqrt[1 - m]) + (m EllipticE[m])/
(6 (1 - m)^(3/2) EllipticK[m])) (z - Subscript[z, 0])^3 +
(((-4 + m) m)/(120 (1 - m)^(3/2)) - (m (4 + 5 m) EllipticE[m])/
(120 (1 - m)^(5/2) EllipticK[m])) (z - Subscript[z, 0])^5 +
\[Ellipsis] /; (z -> Subscript[z, 0]) && Subscript[z, 0] == Pi/2 + Pi u &&
Element[u, Integers] && Element[m, Reals] && m > 1
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["z", "0"]]]]]], ")"]]]], " ", "+", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "m"]]], "-", FractionBox[RowBox[List["EllipticE", "[", "m", "]"]], RowBox[List[SqrtBox[RowBox[List["1", "-", "m"]]], RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["m", RowBox[List["6", " ", SqrtBox[RowBox[List["1", "-", "m"]]]]]], "+", FractionBox[RowBox[List["m", " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["6", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["3", "/", "2"]]], RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "m"]], ")"]], " ", "m"]], RowBox[List["120", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["m", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["5", " ", "m"]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["120", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "5"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[SubscriptBox["z", "0"], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> Ζ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> <mo> - </mo> <mfrac> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> m </mi> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo>  </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> u </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> Ζ </ci> </apply> <apply> <ci> VerticalSeparator </ci> <apply> <arccsc /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <ci> m </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -4 </cn> </apply> <ci> m </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> m </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <ci> u </ci> </apply> </apply> </apply> <apply> <in /> <ci> u </ci> <integers /> </apply> <apply> <in /> <ci> m </ci> <reals /> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", FractionBox[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]], RowBox[List["z", "-", SubscriptBox["zz", "0"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "m"]]], "-", FractionBox[RowBox[List["EllipticE", "[", "m", "]"]], RowBox[List[SqrtBox[RowBox[List["1", "-", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["m", RowBox[List["6", " ", SqrtBox[RowBox[List["1", "-", "m"]]]]]], "+", FractionBox[RowBox[List["m", " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["6", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "m"]], ")"]], " ", "m"]], RowBox[List["120", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["m", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["5", " ", "m"]]]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List["120", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "5"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[SubscriptBox["zz", "0"], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|