  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/08.07.06.0007.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    JacobiZeta[z, m] == ((2 Pi)/EllipticK[m]) 
  Sum[(EllipticNomeQ[m]^k/(1 - EllipticNomeQ[m]^(2 k))) 
    Sin[((k Pi)/EllipticK[m]) EllipticF[z, m]], {k, 1, Infinity}] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", " ", "\[Pi]"]], RowBox[List["EllipticK", "[", "m", "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "k"], " "]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]]]]], RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[Pi]"]], RowBox[List["EllipticK", "[", "m", "]"]]], RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], "]"]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mi> Ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <msup>  <mrow>  <semantics>  <mi> q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> EllipticNomeQ </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mrow>  <semantics>  <mi> q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> EllipticNomeQ </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> JacobiZeta </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <ci> EllipticNomeQ </ci>  <ci> m </ci>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <ci> EllipticNomeQ </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <apply>  <times />  <ci> k </ci>  <pi />  </apply>  <apply>  <ci> EllipticF </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "k"], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", " ", "\[Pi]"]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["EllipticK", "[", "m", "]"]]], "]"]]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]]]]]]]]], RowBox[List["EllipticK", "[", "m", "]"]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |