|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.07.13.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m^2 Cos[z]^2 Sin[z]^2 Derivative[1, 0][w][z, m]^2 +
(m Sin[z]^2 - 1) (4 m^2 Cos[z]^2 Sin[z]^2 +
m Sin[2 z] Derivative[1, 0][w][z, m] Derivative[2, 0][w][z, m] +
(m Sin[z]^2 - 1) Derivative[2, 0][w][z, m]^2) == 0 /;
w[z] == JacobiZeta[z, m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "+", RowBox[List["m", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "m"]], "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z", ",", "m"]], "]"]], "2"]]]]], ")"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> w </ci> </apply> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> </list> <ci> w </ci> </apply> <ci> z </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> w </ci> </apply> <ci> z </ci> <ci> m </ci> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> </list> <ci> w </ci> </apply> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["m_", "2"], " ", SuperscriptBox[RowBox[List["Cos", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "m_"]], "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["m_", " ", SuperscriptBox[RowBox[List["Sin", "[", "z_", "]"]], "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["m_", "2"], " ", SuperscriptBox[RowBox[List["Cos", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z_", "]"]], "2"]]], "+", RowBox[List["m_", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z_"]], "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "m_"]], "]"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["m_", " ", SuperscriptBox[RowBox[List["Sin", "[", "z_", "]"]], "2"]]], "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["z_", ",", "m_"]], "]"]], "2"]]]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|