  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/08.07.13.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    16 EllipticE[m]^6 + 8 EllipticK[m] (Derivative[1][w][z]^2 + 
     Derivative[2][w][z]^2 + 4 m - 8) EllipticE[m]^5 + 
   EllipticK[m]^2 (Derivative[1][w][z]^4 + 
     2 (Derivative[2][w][z]^2 + 16 (m - 2)) Derivative[1][w][z]^2 + 
     (Derivative[2][w][z]^2 + 4 m)^2 - 16 (Derivative[2][w][z]^2 + 6 m - 6)) 
    EllipticE[m]^4 + 2 EllipticK[m]^3 (5 (m - 2) Derivative[1][w][z]^4 + 
     (3 (m - 2) Derivative[2][w][z]^2 + 4 ((m - 14) m + 14)) 
      Derivative[1][w][z]^2 - 4 (m - 1) (Derivative[2][w][z]^2 + 4 (m - 2))) 
    EllipticE[m]^3 + EllipticK[m]^4 ((m - 2) Derivative[1][w][z]^6 + 
     ((m - 2) Derivative[2][w][z]^2 + (m - 54) m + 54) 
      Derivative[1][w][z]^4 + 16 (m - 1)^2 - 2 (m - 1) Derivative[1][w][z]^2 
      (9 Derivative[2][w][z]^2 + 16 (m - 2))) EllipticE[m]^2 - 
   (m - 1) EllipticK[m]^6 Derivative[1][w][z]^4 (Derivative[1][w][z]^4 + 
     (Derivative[2][w][z]^2 + m - 2) Derivative[1][w][z]^2 - m + 1) - 
   2 (m - 1) EllipticE[m] EllipticK[m]^5 Derivative[1][w][z]^2 
    (6 Derivative[1][w][z]^4 + (4 Derivative[2][w][z]^2 + 5 m - 10) 
      Derivative[1][w][z]^2 - 4 m + 4) == 0 /; w[z] == JacobiZeta[z, m] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["16", " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "6"]]], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", RowBox[List["4", " ", "m"]], "-", "8"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "5"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", RowBox[List["4", " ", "m"]]]], ")"]], "2"], "-", RowBox[List["16", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", RowBox[List["6", " ", "m"]], "-", "6"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "4"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "14"]], ")"]], " ", "m"]], "+", "14"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "3"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "54"]], ")"]], " ", "m"]], "+", "54"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List["m", "-", "2"]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "6"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "+", "m", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", "m", "+", "1"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", RowBox[List["EllipticE", "[", "m", "]"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "5"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["5", " ", "m"]], "-", "10"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List["4", " ", "m"]], "+", "4"]], ")"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 8 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 6 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 14 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mn> 14 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 54 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mn> 54 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 5 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 10 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mn> 4 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mi> Ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <power />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -8 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -6 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -14 </cn>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 14 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -54 </cn>  </apply>  <ci> m </ci>  </apply>  <cn type='integer'> 54 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -10 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <ci> JacobiZeta </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["16", " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m_", "]"]], "6"]]], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", "m_", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", RowBox[List["4", " ", "m_"]], "-", "8"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m_", "]"]], "5"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", "m_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", RowBox[List["4", " ", "m_"]]]], ")"]], "2"], "-", RowBox[List["16", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", RowBox[List["6", " ", "m_"]], "-", "6"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m_", "]"]], "4"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m_", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m_", "-", "14"]], ")"]], " ", "m_"]], "+", "14"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m_", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m_", "]"]], "3"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["EllipticK", "[", "m_", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m_", "-", "54"]], ")"]], " ", "m_"]], "+", "54"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "1"]], ")"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m_", "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List["m_", "-", "2"]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["m_", "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m_", "]"]], "6"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "+", "m_", "-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", "m_", "+", "1"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m_", "-", "1"]], ")"]], " ", RowBox[List["EllipticE", "[", "m_", "]"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m_", "]"]], "5"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["5", " ", "m_"]], "-", "10"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List["4", " ", "m_"]], "+", "4"]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |