Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiZeta






Mathematica Notation

Traditional Notation









Elliptic Integrals > JacobiZeta[z,m] > Transformations > Products, sums, and powers of the direct function > Sums of the direct function





http://functions.wolfram.com/08.07.16.0004.01









  


  










Input Form





JacobiZeta[Subscript[z, 1], m] + JacobiZeta[Subscript[z, 2], m] == JacobiZeta[ArcSin[w], m] + m w Sin[Subscript[z, 1]] Sin[Subscript[z, 2]] /; w == (Cos[Subscript[z, 1]] Sin[Subscript[z, 2]] Sqrt[1 - m Sin[Subscript[z, 1]]^2] + Sin[Subscript[z, 1]] Cos[Subscript[z, 2]] Sqrt[1 - m Sin[Subscript[z, 2]]^2])/ (1 - m Sin[Subscript[z, 1]]^2 Sin[Subscript[z, 2]]^2) && Inequality[0, LessEqual, m, Less, 1] && Abs[Subscript[z, 1]] < 1 && Abs[Subscript[z, 2]] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List[SubscriptBox["z", "1"], ",", "m"]], "]"]], "+", RowBox[List["JacobiZeta", "[", RowBox[List[SubscriptBox["z", "2"], ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcSin", "[", "w", "]"]], ",", "m"]], "]"]], "+", RowBox[List["m", " ", "w", " ", RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["w", "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["Cos", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], "2"]]]]]]]], "+", RowBox[List[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["z", "2"], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], "2"]]]]]]]]]], RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], "2"]]]]]]]], "\[And]", RowBox[List["0", "\[LessEqual]", "m", "<", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["z", "1"], "]"]], "<", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["z", "2"], "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &#8804; </mo> <mi> m </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> JacobiZeta </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> </apply> <apply> <ci> JacobiZeta </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <ci> JacobiZeta </ci> <apply> <arcsin /> <ci> w </ci> </apply> <ci> m </ci> </apply> <apply> <times /> <ci> m </ci> <ci> w </ci> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> w </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <cn type='integer'> 0 </cn> <leq /> <ci> m </ci> <lt /> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <apply> <abs /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <apply> <abs /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List[SubscriptBox["z_", "1"], ",", "m_"]], "]"]], "+", RowBox[List["JacobiZeta", "[", RowBox[List[SubscriptBox["z_", "2"], ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcSin", "[", "w", "]"]], ",", "m"]], "]"]], "+", RowBox[List["m", " ", "w", " ", RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]]]]]], "/;", RowBox[List[RowBox[List["w", "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["Cos", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], "2"]]]]]]]], "+", RowBox[List[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["zz", "2"], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], "2"]]]]]]]]]], RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], "2"]]]]]]]], "&&", RowBox[List["0", "\[LessEqual]", "m", "<", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["zz", "1"], "]"]], "<", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["zz", "2"], "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29