|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.07.20.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[JacobiZeta[z, m], {m, 2}] ==
((1/2) (m - 1) m (2 - m + m Cos[2 z]) EllipticK[m]^2
(Sin[2 z] - 2 JacobiZeta[z, m] Sqrt[1 - m Sin[z]^2]) -
(2 - m + m Cos[2 z]) EllipticE[m]^2 (m Sin[2 z] -
2 JacobiZeta[z, m] Sqrt[1 - m Sin[z]^2]) - EllipticE[m] EllipticK[m]
((-m) (3 - 2 m + m Cos[2 z]) Sin[2 z] + 4 JacobiZeta[z, m]
(1 - m Sin[z]^2)^(3/2)))/(8 (m - 1)^2 m^2 EllipticK[m]^2
(1 - m Sin[z]^2)^(3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "2"]], "}"]]], RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["2", "-", "m", "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", "m", "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["EllipticK", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "m"]], "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"], " ", SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "2"]], "}"]]]]], RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["2", "-", "m", "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", "m", "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["EllipticK", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "m"]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "m"]], "+", RowBox[List["m", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "2"], " ", SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|