Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Beta






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Beta[z,a,b] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/06.19.06.0064.01









  


  










Input Form





Beta[z, a, b] \[Proportional] Piecewise[{{ComplexInfinity, a == 0 || (Element[-a, Integers] && -a > 0 && Element[b, Integers] && b > 0 && a + b > 0)}, {Log[z]/E^(I a Pi), Arg[z] <= 0 && a + b == 1}, {(Gamma[a] Gamma[1 - a - b])/(E^(I a Pi) Gamma[1 - b]), Arg[z] <= 0 && Re[a + b] < 1}, {(E^(I b Pi) z^(a + b - 1))/(1 - a - b), (Arg[z] <= 0 && Re[a + b] > 1) || (Element[-a, Integers] && -a > 0 && Element[b, Integers] && b > 0 && a + b <= 0)}, {(E^(I b Pi) z^(a + b - 1))/(1 - a - b) + (Gamma[a] Gamma[1 - a - b])/ (E^(I a Pi) Gamma[1 - b]), Arg[z] <= 0}, {E^(I a Pi) Log[z], Arg[z] > 0 && a + b == 1}, {(E^(I a Pi) Gamma[a] Gamma[1 - a - b])/ Gamma[1 - b], Arg[z] > 0 && Re[a + b] < 1}, {z^(a + b - 1)/(E^(I b Pi) (1 - a - b)), (Arg[z] > 0 && Re[a + b] > 1) || (Element[-a, Integers] && -a > 0 && Element[b, Integers] && b > 0 && a + b <= 0)}}, z^(a + b - 1)/(E^(I b Pi) (1 - a - b)) + (E^(I a Pi) Gamma[a] Gamma[1 - a - b])/Gamma[1 - b]] /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Beta", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List[RowBox[List["a", "\[Equal]", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], ">", "0"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["Log", "[", "z", "]"]], SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], "<", "1"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]]]], RowBox[List["1", "-", "a", "-", "b"]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], ">", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]]]], RowBox[List["1", "-", "a", "-", "b"]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]]]], ",", RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Log", "[", "z", "]"]]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]], ",", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], "<", "1"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], ">", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mtd> <mtd> <mrow> <mrow> <mi> a </mi> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Beta </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> <piecewise> <piece> <apply> <ci> OverTilde </ci> <infinity /> </apply> <apply> <or /> <apply> <eq /> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> b </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <gt /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <and /> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> b </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <leq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <pi /> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <and /> <apply> <gt /> <apply> <arg /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> b </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <leq /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <otherwise> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <pi /> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Beta", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List["ComplexInfinity", RowBox[List[RowBox[List["a", "\[Equal]", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], ">", "0"]]]], ")"]]]]], List[FractionBox[RowBox[List["Log", "[", "z", "]"]], SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], "<", "1"]]]]], List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]]]], RowBox[List["1", "-", "a", "-", "b"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], ">", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]], List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]]]], RowBox[List["1", "-", "a", "-", "b"]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]]]], RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "0"]]], List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Log", "[", "z", "]"]]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[Equal]", "1"]]]]], List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]], RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], "<", "1"]]]]], List[FractionBox[SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Arg", "[", "z", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "b"]], "]"]], ">", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]], "&&", RowBox[List["b", "\[Element]", "Integers"]], "&&", RowBox[List["b", ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]], List[RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["a", "+", "b", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "b"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "-", "b"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02