|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.19.06.0069.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Beta[z, a, b] \[Proportional] Beta[z, a, Subscript[b, 0]] +
((1 - z)^Subscript[b, 0] Gamma[Subscript[b, 0]]^2
HypergeometricPFQRegularized[{1 - a, Subscript[b, 0], Subscript[b, 0]},
{1 + Subscript[b, 0], 1 + Subscript[b, 0]}, 1 - z] -
Beta[1 - z, Subscript[b, 0], a] Log[1 - z] + Beta[a, Subscript[b, 0]]
(PolyGamma[Subscript[b, 0]] - PolyGamma[a + Subscript[b, 0]]))
(b - Subscript[b, 0]) +
(1/2) (((2 (1 - z)^Subscript[b, 0])/Subscript[b, 0]^3)
(-HypergeometricPFQ[{1 - a, Subscript[b, 0], Subscript[b, 0],
Subscript[b, 0]}, {1 + Subscript[b, 0], 1 + Subscript[b, 0],
1 + Subscript[b, 0]}, 1 - z] + Subscript[b, 0] Log[1 - z]
HypergeometricPFQ[{1 - a, Subscript[b, 0], Subscript[b, 0]},
{1 + Subscript[b, 0], 1 + Subscript[b, 0]}, 1 - z]) +
Beta[a, Subscript[b, 0]] ((PolyGamma[Subscript[b, 0]] -
PolyGamma[a + Subscript[b, 0]])^2 + PolyGamma[1, Subscript[b, 0]] -
PolyGamma[1, a + Subscript[b, 0]]) - Beta[1 - z, Subscript[b, 0], a]
Log[1 - z]^2) (b - Subscript[b, 0])^2 + \[Ellipsis] /;
(b -> Subscript[b, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Beta", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Beta", "[", RowBox[List["z", ",", "a", ",", SubscriptBox["b", "0"]]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["b", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["b", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[RowBox[List["1", "-", "z"]], ",", SubscriptBox["b", "0"], ",", "a"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Beta", "[", RowBox[List["a", ",", SubscriptBox["b", "0"]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["b", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["b", "0"]]]], SubsuperscriptBox["b", "0", "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["b", "0"], RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]]]], ")"]]]], "+", " ", RowBox[List[RowBox[List["Beta", "[", RowBox[List["a", ",", SubscriptBox["b", "0"]]], "]"]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["b", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", SubscriptBox["b", "0"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[RowBox[List["1", "-", "z"]], ",", SubscriptBox["b", "0"], ",", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", SubscriptBox["b", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["b", "\[Rule]", SubscriptBox["b", "0"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "a"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "-", "z"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msub> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msub> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </msup> </mrow> </mrow> <msubsup> <mi> b </mi> <mn> 0 </mn> <mn> 3 </mn> </msubsup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "a"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "-", "z"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "a"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "0"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "0"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "-", "z"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Beta </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <ci> Beta </ci> <ci> z </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Beta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <ci> a </ci> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Beta </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Beta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Beta", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Beta", "[", RowBox[List["z", ",", "a", ",", SubscriptBox["bb", "0"]]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["bb", "0"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["bb", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[RowBox[List["1", "-", "z"]], ",", SubscriptBox["bb", "0"], ",", "a"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Beta", "[", RowBox[List["a", ",", SubscriptBox["bb", "0"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["bb", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["bb", "0"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["bb", "0"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]]]], ")"]]]], SubsuperscriptBox["bb", "0", "3"]], "+", RowBox[List[RowBox[List["Beta", "[", RowBox[List["a", ",", SubscriptBox["bb", "0"]]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["bb", "0"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", SubscriptBox["bb", "0"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["Beta", "[", RowBox[List[RowBox[List["1", "-", "z"]], ",", SubscriptBox["bb", "0"], ",", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", SubscriptBox["bb", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["b", "\[Rule]", SubscriptBox["bb", "0"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|