|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.20.04.0025.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[Beta[Subscript[z, 1], Subscript[x, 2] - I \[Epsilon], a, b],
\[Epsilon] -> Plus[0]] == Beta[Subscript[z, 1], Subscript[x, 2], a, b] -
(1 - E^(-2 I a Pi)) Beta[Subscript[x, 2], a, b] /; Subscript[x, 2] < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List[SubscriptBox["x", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]], ",", "a", ",", "b"]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["x", "2"], ",", "a", ",", "b"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]]], ")"]], RowBox[List["Beta", "[", RowBox[List[SubscriptBox["x", "2"], ",", "a", ",", "b"]], "]"]]]]]]]], "/;", RowBox[List[SubscriptBox["x", "2"], "<", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> ϵ </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mtext> </mtext> <mrow> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϵ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> ϵ </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mtext> </mtext> <mrow> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϵ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msub> <semantics> <mi> Β </mi> <annotation encoding='Mathematica'> TagBox["\[CapitalBeta]", BetaRegularized] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <msub> <mi> x </mi> <mn> 2 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> x </mi> <mn> 2 </mn> </msub> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["z_", "1"], ",", RowBox[List[SubscriptBox["x_", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]], ",", "a_", ",", "b_"]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Beta", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["xx", "2"], ",", "a", ",", "b"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "a", " ", "\[Pi]"]]]]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List[SubscriptBox["xx", "2"], ",", "a", ",", "b"]], "]"]]]]]], "/;", RowBox[List[SubscriptBox["xx", "2"], "<", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|